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ABSTRACT
Coalition structure generation (CSG) for multi-agent systems is a
well-studied problem. A vast majority of the previous work and the
state-of-the-art approaches to CSG assume a characteristic function
form of the coalition values, where a coalition’s value is indepen-
dent of the other coalitions in the coalition structure. Recently,
there has been interest in the more realistic partition function form
of coalition values, where the value of a coalition is affected by
how the other agents are partitioned, via externalities. We argue
that in domains with externalities, a distributed/adaptive approach
to CSG may be impractical, and that a centralized approach to CSG
is more suitable. However, the most recent studies in this direc-
tion have focused on cases where all externalities are either always
positive or always negative, and results on coalition structure gen-
eration in more general settings (in particular, mixed externalities)
are lacking. In this paper we propose a framework based on agent-
types that incorporates mixed externalities and demonstrate that it
includes the previous settings as special cases. We also generalize
some previous results in anytime CSG, showing that those results
are again special cases. In particular, we extend the existing branch
and bound algorithm to this new setting and show empirically that
significant pruning can be achieved when searching for the opti-
mal coalition structure. This extends the state-of-the-art in CSG
for multi-agent systems.

1. INTRODUCTION
Coalition formation is an important problem in multi-agent sys-

tems, where several intelligent, autonomous computational agents
must be partitioned into teams so that their global utility –the sum
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of the team utilities – is maximized. Many practical applications
can be modeled by this problem, for instance, customer coalitions
in electronic marketplaces to extract group discounts [16], node
coalitions in grid computing for coordinated resource sharing [3],
distribution of targets in sensor networks [1], and in distributed task
allocation [13] in general.

An important subproblem in coalition formation is optimal coali-
tion structure generation (CSG) [13, 12, 2, 10]. In this paper we do
not address the other subproblems viz., performance optimization
and payoff division [12]. Coalition structure generation has been
predominantly studied in the characteristic form where the value of
any coalition depends on that coalition alone. However, in prac-
tice, the value of a coalition may additionally depend on the other
coalitions in the coalition structure. In economic theory, these de-
pendencies are referred to as externalities [4]. For an example on
a global scale, consider the coalition C, a manufacturing firm, and
the complementary coalition C′ of everyone else. The decisions
made by C could affect the level of pollution – an effect that C′

must also share. Therefore, it can be argued that the value of C′

depends partly on the formation of the coalition C, and not just
on the intrinsic valuation of C′ itself. To see that a coalition may
impact different other coalitions differently, consider the recently
attempted merger of Yahoo with Microsoft. This coalition would
have impacted Google and its partners in a different manner (pos-
sibly negatively) than it would have impacted, say, a coalition of
stock traders on the Wall Street (possibly positively). When the
goal is to form the optimal coalition structure in an agent-based
system, such externalities must be taken into account to reflect the
true value of a coalition structure. Until recently, CSG algorithms
did not take externalities into account, and therefore, could return
coalition structures where the individual coalitions may be intrinsi-
cally high-valued, but that impact each other negatively, leading to
a poor coalition structure.

Recently, externalities have been taken into account for CSG [7,
9], under certain restrictions (that the externalities are either always
positive or always negative) which we seek to relax in this paper.
But we also seek to emphasize a necessary departure from the tradi-
tional adaptive coalition formation process in multi-agent systems
with externalities. Even though agents do not possess global in-
formation, in domains without externalities they can still form the
optimal (or satisficing [15]) coalition structure through repeated in-
teraction, communication/negotiation, and adaptation [14]. This is
because the valuation of a coalition, when discovered by its con-
stituents, is independent of the behavior of the other agents. But in
domains with externalities, autonomous agents with limited local
view may find that reaching a “good” coalition structure is an ex-
tremely difficult proposition, since any local structure that a group
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of agents might discover would have differing (and an intractable
number of) valuations depending on how the other agents parti-
tion themselves. A coalition structure that looks “good” in the
local context may be arbitrarily “poor” in the global context. In
an agent based economy with collaborators and competitors, we
believe that the presence of externalities makes it extremely inef-
ficient for agents to attempt coalition formation in an adaptive or
distributed way, with the potential for a disastrous beginning. Even
in human economies, laws (e.g., anti-trust laws) need to be contin-
ually evolved to encourage appropriate partnerships; therefore it is
unreasonable to expect that the rules of encounter in agent systems
will be perfect from the very beginning. In such a circumstance, in-
appropriate coalition structures (or those evolving from poor initial
structures) can be arbitrarily damaging to agent economies, at least
in the beginning.

Against this backdrop, we emphasize a centralized approach to
computing the optimal coalition structure in domains with external-
ities, based on estimates of the worth of individual coalitions and
their impacts on each other, as a more viable alternative. Even if the
coalition values are based on inaccurate information, the solution
thus produced might provide a strong basis for the agents to initiate
their activities in a fruitful way, as they negotiate and realign their
coalition structure with new knowledge, experience and goals over
time.

In this paper, we develop a framework for mixed externalities
(i.e., where positive and negative externalities can co-exist, as in the
Yahoo/Microsoft example) based on the notions of competition and
complementation, and show that this framework includes the pre-
vious settings as special cases. We also generalize some previous
results in this new framework. In particular, we extend the existing
branch and bound algorithm to this new setting and show empiri-
cally that significant pruning can be achieved when searching for
the optimal coalition structure. In the next section we present the
basic notations and definitions that will be used to formalize our
framework.

2. PRELIMINARIES AND DEFINITIONS
Let A be a set of n agents. A coalition, C, is a non-empty subset

of A, i.e., C ∈ 2A \ ∅. A non-overlapping coalition structure,
CS, is a set of coalitions, CS = {C1, C2, . . . Ck}, subject to the
constraints

• Sk
j=1

Cj = A,

• Cp

T
Cj = ∅ ∀p, j = 1 . . . k, p �= j

In a setting with externalities, the value of a coalition C depends on
the other coalitions in the coalition structure, and hence, is specified
in context of the coalition structure as v(C, CS). The problem of
optimal CSG in such a setting seeks a coalition structure CS∗, such
that

V (CS∗) =
X

C∈CS∗
v(C, CS∗)

is optimized. We represent the set of all partitions of the agent set
S ⊆ A as P(S), whereby P(A) is the set of all possible coalition
structures. We also use v for values of coalitions, and V for the
values of partitions.

The following definition specifies two kinds of partitions of any
set of agents S, that will be used to define our type-based setting in
section 4 and again in section 6.1 for the search algorithm.

Definition 1. Given any set of agents, S, we define two specific
partitions of S: P1(S) ∈ P(S) where all agents are in singleton

coalitions, and P∞(S) ∈ P(S) where all agents in S are in a
single coalition. That is

P1(S) = {{ai}|ai ∈ S}

P∞(S) = {S}

The following defines a function α that aggregates agents out of
any partition, and will be used for notational convenience through-
out the paper.

Definition 2. Given any partition, P , of any set of agents, we de-
fine α(P ) as simply the set of all agents that can be found in any
coalition within P . That is

α(P ) =
[

p∈P

p = {ai ∈ A|∃p ∈ P : ai ∈ p}.

The following definition explicates the externality function E for
both coalitions and partitions, on which our setting crucially relies.

Definition 3. Given a coalition C, and two partitions Pa, Pb ∈
P(S) for S ⊂ A \ C, the externality induced on C for switching
from partition Pb to Pa in a coalition structure CS is given by

E(C, Pa, Pb; P̄ ) = v(C, Pa ∪ P̄ ∪ {C}) − v(C, Pb ∪ P̄ ∪ {C})
where P̄ ∈ P(A\(C∪S)) and CS = {C}∪Pb∪P̄ . By extension,
the externality on a partition P is given by

E(P, Pa, Pb; P̄ ) =
X
p∈P

E(p, Pa, Pb; P̄ ).

3. RELATED WORK
The problem of optimal coalition structure generation (CSG) has

received significant attention in the past. Ketchpel [5] presented a
holistic approach that addressed both both CSG and payoff division
among the agents. Shehory and Kraus [13] present an algorithm for
coalition formation among cooperating agents, but limit the num-
ber of agents that can belong to any single coalition. Sandholm et.
al. [12] present perhaps the first algorithm for optimal CSG with
anytime guarantees, i.e., their algorithm can produce a solution of
bounded quality after some minimal search, and the quality of the
solution provably improves with further search. This algorithm
was also shown to be effective in average case studies [6]. Subse-
quently, more anytime algorithms with improved bounds were in-
troduced [2, 10, 11]. These algorithms have significantly advanced
the state-of-the-art in CSG. However, a common characteristic of
all of this work is that they assume the coalition values in the char-
acteristic function form where coalitions do not impact each other’s
values. This is a limiting assumption that is often violated in reality.

More recently, there has been interest in the more realistic par-
tition function form of coalition values, where a coalition’s value
differs from one coalition structure to another, due to (different) ex-
ternalities induced by the other coalitions. Various representational
schemes have been proposed and compared, for such coalitional
games [8]. Michalak et. al. [7] have also studied a limited setting
of such games where either the externalities are always positive and
the game is weakly sub-additive (PF+

sub), or the externalities are
always negative and the game is weakly super-additive (PF−

sup).
Rahwan et. al. [9] have relaxed the assumptions of sub and super-
additivities in such games, and proposed an optimal CSG algorithm
for the more general PF+ and PF− settings, where only the ex-
ternalities are either always positive or always negative. However,
even this setting is not general enough since in reality some ex-
ternalities are negative while others are positive in the same game
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(e.g., consider the example of acquisition of Yahoo by Microsoft).
We offer a further generalization over the PF+ and PF− settings
that allows such mixed externalities, and derive a branch and bound
algorithm for this more general setting.

4. AGENTS WITH TYPES
We assume that each agent has a type. In particular, a set of types

T = {1, . . . , t}, with 1 ≤ t ≤ n, and a type function τ : A �→ T
are assumed. Let ni represent the number of agents in A that are
of type i ∈ T . Therefore,

Pi=t
i=1

ni = n. We also refer to the
set of types of agents belonging to a coalition C as TC ⊆ T . The
following definition helps us extract agents of some given types,
from a given coalition.

Definition 4. Given any set of agents S (which may or may not be
a coalition), and a set of types T , a subset of agents from S that
have matching types from T is given by

A(T, S) = {a ∈ S|τ(a) ∈ T}

Next we define two disjoint subsets of C̄ for any given coalition
C, that will form the foundation of our setting.

Definition 5. Given a coalition C of agents from A, we define two
disjoint subsets of agents in A \ C (i.e., C̄) : the complementers
and the competitors, given respectively as

AC = {a ∈ A \ C|�b ∈ C, τ(a) = τ(b)} = A(T \ TC , C̄)

A
′
C = {a ∈ A \ C|∃b ∈ C, τ(a) = τ(b)} = A(TC , C̄)

The set AC stands for the set of all agents outside C, which

have distinct types from all agents in C. Complementarily, A
′
C

stands for the set of all agents outside C, each of which matches the
type of at least one agent in C. We argue that the maximum value
of any coalition C (over all coalition structures) is achieved when

all agents in A
′
C are separated (i.e., singletons) while all agents in

AC are in a single coalition. This is because agents in A
′
C can

be considered as competitors (e.g., they offer the same products or
services, being of a matching type), which gives the best value to C

when A
′
C is maximally fractured. On the other hand, the agents in

AC being of distinct (or complementary) types, the best value to C
is achieved when they offer a united front of interaction to C. For
instance, retail giants such as Wal-mart (representing a coalition
of various types of merchandise manufacturers) are advantageous
to non-retailers since they offer single-stop shopping for a wide
variety of goods. However, they do compete with other retailers
that offer similar merchandise. In terms of our notations,

v(C, CS) ≤ v(C, {C} ∪ P1(A
′
C) ∪ P∞(AC)) (1)

By the same token, the minimum value of a coalition C is achieved

when the agents in A
′
C (i.e., competitors) are in a single coali-

tion, while the agents in AC are all singletons. As a running ex-
ample, consider A = {a1, a2, a3, a4}, and T = {1, 2}, with
τ(a1) = τ(a2) = 1, τ(a3) = τ(a4) = 2, as shown in Ta-
ble 1. Then the coalition {a1} has its maximum value in the coali-
tion structure {{a1}, {a2}, {a3, a4}}, but its minimum value in
the coalition structure {{a1}, {a2}, {a3}, {a4}}. Similarly, the
coalition {a1, a3} has its maximum value in the coalition struc-
ture {{a1, a3}, {a2}, {a4}}, but its mimimum value in {{a1, a3},
{a2, a4}}. Table 1 shows all the coalition structures where a coali-
tion has its maximal value. Formally,

v(C, CS) ≥ v(C, {C} ∪ P1(AC) ∪ P∞(A
′
C)) (2)

Table 1: Running example, showing the 12 distinct optimal
coalition structures for the 15 possible coalitions. The boxed
coalition structures are repeated.
A = {a1, a2, a3, a4}
T = {1, 2}
τ(a1) = τ(a2) = 1, τ(a3) = τ(a4) = 2

Coalition (C) Coalition structure
where C has its maximum value

{a1} {{a1}, {a2}, {a3, a4}}
{a2} {{a1}, {a2}, {a3, a4}}
{a3} {{a1, a2}, {a3}, {a4}}
{a4} {{a1, a2}, {a3}, {a4}}
{a1, a2} {{a1, a2}, {a3, a4}}
{a1, a3} {{a1, a3}, {a2}, {a4}}
{a1, a4} {{a1, a4}, {a2}, {a3}}
{a2, a3} {{a1}, {a2, a3}, {a4}}
{a2, a4} {{a1}, {a2, a4}, {a3}}
{a3, a4} {{a1, a2}, {a3, a4}}
{a1, a2, a3} {{a1, a2, a3}, {a4}}
{a1, a2, a4} {{a1, a2, a4}, {a3}}
{a1, a3, a4} {{a1, a3, a4}, {a2}}
{a2, a3, a4} {{a1}, {a2, a3, a4}}
{a1, a2, a3, a4} {{a1, a2, a3, a4}}

In [9], two special settings with externalities are defined, viz.,
PF+ and PF−, where all externalities are positive and negative
respectively. The consequence of such monotonic externalities is
that a coalition attains its higest value when all other agents (out-
side the coalition) are singletons (in PF−), or united in a single
coalition (in PF+). It is instructive to note that our setting above
reduces to these two special settings under the following condi-
tions:

PF+: when t = n, and ni = 1, ∀i, i.e., all agents are of distinct
types.

PF−: when t = 1, n1 = n, i.e., when all agents are of a single
type.

In the above special cases, the total externality exerted by all
other coalitions on any given coalition is either always negative
(PF−), or always positive (PF+), and all results from [9] should
extend to these cases unchanged. However, in the general case
where externalities can have mixed signs, the partition values can-
not be upper and lower bounded in single coalition structures, un-
like [9] (Theorem 1). In other words, the upper and lower bounds of
individual coalitions in any partition may occur in different coali-
tion structures, as evident from equations 1, 2. However, the upper
and lower bounds on the value of any partition can still be estab-
lished as

V (P, CS) ≤
X
p∈P

max
CS

v(p, CS) (3)

V (P, CS) ≥
X
p∈P

min
CS

v(p, CS) (4)

both of which can be computed without any combinatorial search,
exploiting equations 1 and 2.

We make the following two basic assumptions that are justified
in the type-based setting. Most importantly, equations 1– 4 follow
from these assumptions as consequences, therefore these assump-
tions are central to our setting.
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Assumption 1. Given two coalitions C1, C2 ∈ CS such that TC1∩
TC2 �= ∅, and any partition P ∈ P(C2),

E(C1, P, {C2}; CS) ≥ 0

Since C1 and C2 contain some agents of common types, these
coalitions are competitive to each other. As a result, any partition-
ing of one (here C2) is likely to weaken it and benefit the other
(here C1), i.e., exert a positive externality on the latter. The above
assumption formalizes this intuition. Clearly, it is biased toward
weakening coalitions that are known to be competitive (even if the
C2 consists of just a few types competitive to C1), rather than
strenghtening the complementary types in C2 since these agents
are only potential collaborators of C1.

Assumption 2. Given a coalition C ∈ CS and a partition P ⊆
CS \ C, if TC ∩ Tα(P ) = ∅ then

E(C, {α(P )}, P ; CS) ≥ 0

The above assumption formalizes the complementary intuition
that when a (sub)partition of C̄ (here P ) is complementary to C in
types, then the (sub)partition constitutes potential collaborators for
C. Hence uniting that (sub)partition will strengthen the potential
collaborators of C, and thus exert a positive externality on C.

5. WORST-CASE INITIAL BOUND
In this section we establish a minimal set of coalition structures,

P0 ⊂ P(A), that must be searched to establish a bound

β =
maxP∈P(A) V (P )

maxP∈P0 V (P )
(5)

on the quality of the best solution in P0. As established before [12],
in CSG problems there exists a minimal set of coalition structures
such that unless all of these are seen, no bound β can be estab-
lished, since the optimal coalition structure can be arbitrarily better
than the best of a smaller set. Such a bound may be useful in at
least two ways. Firstly, it establishes an initial bound that can be
reduced with further search in an anytime fashion [12, 9]. Another
application would be to use the value of the best solution in P0

as the initial estimate in a branch and bound search for the opti-
mal coalition structure. Such initial estimates are often produced
through greedy search or other relaxations, without any bound on
their quality. Instead, we would search a fixed set of coalition struc-
tures, P0, and know that the initial estimate thus generated has a
non-trivially upper-bounded β (equation 5). In this section we pro-
duce P0 and the corresponding β for precisely this purpose.

The following theorem that was proved in [9] is useful in the
current setting as well. Therefore, we state this theorem below.

Theorem 1. (Rahwan et. al. 2009) Let X be a set of elements, and
let Ys be a set containing subsets of X such that: ∀y ∈ Ys, |y| ≤ s.
Moreover, for all x ∈ X, y ∈ Ys, let us define v(x, y) ≥ 0 as the
value of x in y, and let us define V (y) =

P
x∈y v(x, y) as the

value of y. Then for any Y
′

s ⊆ Ys, if

∀x ∈ X, ∃y′ ∈ Y
′

s : x ∈ y′ and v(x, y′) = max
y∈Ys

v(x, y)

then the following holds:

max
y∈Ys

V (y) ≤ s · max
y∈Y

′
s

V (y)

Next we state and prove the main theorem of this section that
stipulates P0 and the corresponding β in settings with mixed ex-
ternalities based on agent-types, utilizing the above theorem in the
proof.

Theorem 2. To establish an initial bound β on the best value of a
coalition structure returned by any search algorithm, a minimal set
of coalition structures, P0, of size |P0| = 2n − n + t − 2t−1 must
be searched, with the resulting bound being

β = t +

—
n − t

2

�

Proof: We follow the same line of reasoning as [9], requiring that
the maximum possible value of each coalition C must be observed
(in some coalition structure), to establish a bound. This means one
coalition structure would have to be observed for each coalition
(2n−1 such), unless some of these coalition structures are common
among multiple coalitions, which is indeed the case. Therefore
the number of coalition structures that need to be searched will
be ≤ 2n − 1. The following two disjoint cases capture all such
commonalities:

Case 1: |C| = 1, i.e., the maximum value of a singleton is being
observed. Let C = {a}. Then all other nτ(a) − 1 agents (of
the same type as a) must be separated, and all

P
j �=τ(a)

nj

agents must be together in the coalition structure where C
has its maximum value. But any other singleton of type τ(a)
will have its maximum value in the same coalition structure
as well. Thus, only 1 coalition structure needs to be observed
for ni singleton coalitions of type i, instead of ni. Therefore,
in this case, the adjustment to 2n − 1 needs to be

tX
1

(−ni + 1)

= −n + t.

Case 2: C covers some types, i.e., for some T ′ ⊂ T , C con-
tains all agents of types in T ′. Then A \ C contains agents
that are of complementary types to C, and therefore these
agents must be in a single coalition for C to achieve its max-
imum value. Thus the optimal coalition structure for C will
be {C, A\C}. But by the same argument, the coalition A\C
will have its maximum value in the same coalition structure
as well. Therefore, only 1 coalition structure needs to be ob-
served for the optimal values of both coalitions C and A\C,
instead of 2. So in this case the adjustment to 2n − 1 needs
to be

−1

2

t−1X
1

 
t

k

!

= −2t−1 + 1.

Combining the above adjustments, the size of the set of coalition
structures, P0, to be observed is

2n − n + t − 2t−1

In the running example in Table 1, the 12 distinct coalition struc-
tures that constitute P0 are shown (unboxed in the right column).

Now in order to establish the bound β we utilize theorem 1, by

Step 1: selecting X to be the set of all coalitions, augmented by
partitions of singletons, whose maximal values can be ob-
served in P0, and
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Step 2: selecting Ys to be the set of coalition structures where
many structures have been compressed by coalescing parti-
tions that appear in X .

The augmentation of X in step 1 above can be performed in the
following way: for any type i ∈ T , we can select a subset (of size
2 thru ni) of the ni agents of type i and create a singleton partition
of these agents. These partitions are guaranteed to appear at least
once in P0 with their optimal values, by its construction, and only
contain agents of the same type. However, no other partition can
be guaranteed, in general, to occur in P0 with their optimal values,
and therefore only

tX
i=1

 
ni

2

!
+ . . . +

tX
i=1

 
ni

ni

!

=

tX
i=1

2ni − n − t

singleton-partitions can be added to X in step 1 1. In the running
example in Table 1, only the 2 ·22 −4−2 = 2 singleton-partitions
{{a1}, {a2}} and {{a3}, {a4}} can be added to X . The partition
{{a1}, {a3}}, for instance, cannot be added to X since it may not
be guaranteed to occur with its optimal value in P0, 2 although it
does appear in P0.

Given the above augmentation of X , in step 2 we coalesce the
singletons in any coalition structure that match any partition in aug-
mented X . We are interested in the size of the largest coalition
structure at the end of this process. We construct such a coalition
structure by first picking t agents –one of each distinct type pro-
ducing a singleton coalition– and then pairing the remaining n − t
agents. Evidently, a larger coalition structure will contain a parti-
tion matching with one in the augmented X , and thus compressed.
In the running example in Table 1, {{a1}, {a3}, {a2, a4}} is such a
coalition structure, and the larger coalition structure {{a1}, {a2},
{a3}, {a4}} will have been compressed to {{{a1}, {a2}}, {{a3},
{a4}}} which is only of size 2. Also note that if n − t is odd, then
the one agent left-over from the pairing will be coalesced with one
of the t agents selected first, since it must have a matching type.
Therefore, the set of coalition structures, Ys, that we can limit our
focus to, contains no coalition structure with more than

s = t +

—
n − t

2

�

(compressed) coalitions. Now, given the augmented X from step

1, and Ys determined in step 2, theorem 1 applies with Y
′

s = P0.
Therefore,

β = t +

—
n − t

2

�

It is straightforward to verify that the results in the above Theo-
rem reduce to the results in Theorem 3 in [9] in the special cases
of PF+ and PF−. For instance, in PF− (where t = 1 in the

1If np = 1 for some type p, then it will contribute 0 to this sum,
since that agent already appears in X as a coalition.
2In this particular example, actually the partition {{a1}, {a3}}
can be shown to occur with its optimal value in P0, by elim-
ination. Since there are only two possible coalition structures
where this partition can occur, viz., {{a1}, {a2, a4}, {a3}} and
{{a1}, {a2}, {a3}, {a4}}, but {{a1}, {a2}, {a3}, {a4}} happens
to be the coalition structure where the partition occurs with its mini-
mum value, the other must have its maximum value. Note that such
guarantees are instance-dependent, and may not hold in general.

type-based setting), Rahwan et. al (2009) proved β = �n
2
�, which

matches the above expression of β upon the substitution t = 1.
Furthermore, the above proof not only establishes minimum |P0|
but also stipulates how to construct P0, which will be used for
branch and bound search, as described in the next section.

6. BRANCH AND BOUND SEARCH
One important feature of the branch and bound search in [9] was

the use of pre-pruning in the integer partition space. This might in-
dicate that an analogous partitioning of the type-space would ben-
efit the current setting in the same way. However, a type-space
partitioning of the multi-agent system in a PF+ setting would de-
generate to an agent-space partitioning (since all agents are of dif-
ferent types) and pruning partitions in this space would be as hard
as pruning partitions in the agent-space. Therefore, we do not per-
form any search in the type-space and instead search directly in the
agent space, hoping that with the appropriate bounding criteria we
can still perform significant pruning.

The following theorem generalizes Theorem 4 in [9] for our
type-based setting and is an important bounding criterion in our
branch and bound search.

Theorem 3. Given a coalition C ⊆ A and a partition P ∈ P(C),
a coalition structure containing P can be pruned from the search
space if there exists another partition P ′ ∈ P(C) such that UBP ≤
LBP ′ and ∀p′ ∈ P ′ at least one of the following is true:

1. ∃p ∈ P : p′ = p

2. ∃p ∈ P : p′ ⊂ p and Tp ⊇ TC̄

3. Tp′ ∩ TC̄ = ∅ and ∃S ⊆ P : p′ ⊆ α(S) and
∀p ∈ S, Tp ∩ TC̄ = ∅ =⇒ p ⊂ p′ and
∀p ∈ S, Tp ∩ TC̄ �= ∅ =⇒ Tp ⊇ TC̄

Proof: Given C ⊆ A and two partitions P, P ′ ∈ P(C) such that
UBP ≤ LBP ′ and ∀p′ ∈ P ′, ∃p ∈ P such that at least one of the
previous statements is true, we follow the same line of reasoning
as [9] to show that, for any coalition structure CS ⊇ P , there ex-
ists another coalition structure CS′ such that V (CS) ≤ V (CS′).
Letting P̄ = CS \ P we have:

V (CS) = V (P, CS) + V (P̄ , CS)

V (CS′) = V (P ′, CS′) + V (P̄ , CS′)

Since UBP ≤ LBP ′ , we know that

V (P, CS) ≤ V (P ′, CS′) (6)

Therefore we have only left to show that

V (P̄ , CS) ≤ V (P̄ , CS′) (7)

In order to prove equation 7, we must show that the externalities
exerted on P̄ by P ′ are greater than or equal to those exerted on P̄
by P . That is, we must show that E(P̄ , P ′, P ; {}) ≥ 0. To prove
this, we must verify that each p′ is the result of some operation on
P that does not decrease the externalities exerted on P̄ . We verify
this for the three cases outlined in the theorem:

Case 1: p′ equals some p ∈ P .
This case is trivial because p′ appears in both P and P ′ and
E(P̄ , {p′}, {p′}, P \ {p}) = 0.

Case 2: p′ is the result of partitioning (splitting) some p ∈ P .
Since Tp ⊇ TC̄ , then ∀p̄ ∈ P̄ , Tp̄ ∩ Tp �= ∅. Thus, by

Assumption 1, E(P̄ , P
′′
, {p}; P \ {p}) ≥ 0 for all P

′′ ∈
P(p) with p′ ∈ P

′′
.
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Case 3: In this case, p′ contains agents from multiple p ∈ P . That
is, the process by which p′ is created entails merging and
may also include splitting. We show first that any splitting
required to create p′ cannot decrease the externalties exerted
on P̄ . We assume without loss of generality that ∀p ∈ S, p′∩
p �= ∅. Let S′ =

S
p∈S{p∩ p′, p \ p′}. Notice that for p that

do not need to be split (i.e. p \ p′ = ∅), p ∩ p′ = p. Since
Tp ∩ TC̄ = ∅ =⇒ p ⊂ p′, we know that p \ p′ is only non-
empty when Tp ∩ TC̄ �= ∅. Furthermore, since Tp ∩ TC̄ �=
∅ =⇒ Tp ⊇ TC̄ we know that ∀p ∈ S, if p was split,
Tp ∩ Tp̄ �= ∅ for all p̄ ∈ P̄ . Then, by Assumption 1, ∀p ∈
S : Tp ∩ TC̄ �= ∅, E(P̄ , {p∩ p′, p \ p′}, {p}; P \ {p}) ≥ 0.
Because s’ that are not the result of splitting remain constant
from S to S′ and therefore do not change the externality, it
follows then that E(P̄ , S′, S; P \ S)) ≥ 0.

Now, we must show that the merging required to create p′

from S′ cannot decrease the externalities exerted on P̄ . Let
S

′′
= {s′ ∈ S|s′ ∩ p′ �= ∅}. Because all s′ in S′ which

intersect with p′ are subsets of p′, and since S
′′

only con-
tains the partitions in S′ which intersect with p′, S′′ is a
partition of p′. Since Tp′ ∩ TC̄ = ∅, by Assumption 2,
E(P̄ , {p′}, S′′; P \ S) ≥ 0.

We have shown that if a p′ satisfies any of the three cases, the
process by which p′ is created exerts a positive externality on P̄ .
Since each p′ must satisfy one of these cases, it follows that

V (P̄ , CS′) ≥ V (P̄ , CS).

This proves equation 7 and therefore completes the proof.

6.1 The Search Algorithm
We perform branch and bound search under the guidance of the

integer partition space, in a manner similar to [9]. Specifically, for
any given integer partition of n, I = [i1, i2, . . . , i|I|], we generate
non-overlapping coalitions of size i1, i2, etc., and at any point k <
|I|, we check

UB{C1,C2,...,Ck}+Maxik+1 +. . .+Maxi|I| < V (CSbest) (8)

where

• |Cj | = ij , j = 1 . . . k

• Maxij = maxC⊆A:|C|=ij
v(C, {C}∪P1(A

′
C)∪P∞(AC))

(based on equation 1)

• UB{C1,C2,...,Ck} is the upper bound of partition {C1, C2, . . . ,
Ck}, and is calculated from equation 3.

• V (CSbest) is initialized based on the search in Theorem 2
(with the associated guarantees), and updated during the branch
and bound search.

If an agent-partition satisfies equation 8, then it is pointless to ex-
pand that partial solution, so that branch is pruned. We also use
Theorem 3 as an additional pruning criterion in the following way:

• For any partition P ∈ P(S) where S ⊂ A, such that P
constitutes the partial solution at the current location in the
branch and bound tree, we construct P ′ as X ∪Y ∪Z where

X = {p ∈ P |TS̄ \ Tp �= ∅ and TS̄ ∩ Tp �= ∅}
Y =

[
p∈P\X

P1(A(TS̄ , p))

Z =
[

p∈P\X

{A(T \ TS̄ , p)}

the set of coalitions based on S that contain some but not all
types in S̄, and hence cannot be changed to improve the value
of S̄. Y is built by extracting all agents from the remaining
coalitions that have matching types with S̄ and turning them
into singletons. Z simply keeps all remaining (after X and
Y ) coalitions in tact since these are potential collaborators of
S̄. The resulting P ′ guarantees that the conditions of The-
orem 3 (except the bounds) apply and thus form a feasible
candidate to prune P by that theorem.

• UBP and LBP ′ are calculated using equations 3 and 4 re-
spectively.

Lastly, the integer partitions of n are ordered by decreasing val-
ues of their upper bounds, UBI , given by

UBI = UB[i1,i2,...,i|I|] =

|I|X
k=1

Maxik ,

where Maxik is calculated as stated above. Furthermore, an inte-
ger partition whose upper bound is lower than the current V (CSbest)
is also pruned. We call this the 3rd pruning criterion.

6.2 Data Generation
We follow a similar strategy to [9] to generate the values v(C, CS)

for experimentation, except that unlike [9], where the externalities
are exclusively added or subtracted, we must perform both. In par-
ticular, we need to consider the relationship between the type sig-
nature of C and each coalition in CS\{C}. We do this by defining
two partitions of CS \ {C}:

CL = {C′ ∈ CS \ {C}|TC′ ∩ TC = ∅}

CC = {C′ ∈ CS \ {C}|TC′ ∩ TC �= ∅}
where CL is the set of coalitions which are potential collaborators
for C, and therefore exert positive externalities on C. Likewise CC

is the set of coalitions which compete with C and exert negative
externalities on it.

As in [9], we randomly generate non-negative numbers vC and
eC and then produce the sequence eC,1, eC,2, . . . , eC,|C̄|, such thatP|C̄|

j=1
eC,j = eC . These enunciate the contribution of each agent

in C̄ to the total externality on C. Based on these values, we calcu-
late the total externality of any partition P ∈ P(C̄) on C as:

e(P ) =
X

ai∈α(P )

eC,l(ai,C̄) ∗ (1 − l(ai, P ) − 1

|α(P )| )

where l(ai, C̄) gives the location of agent ai in the set C̄ when
enumerated lexicographically (e.g., l(a3, {a2, a3, a5, a8}) = 2),
and similarly l(ai, P ) gives the location of the (lexicographically
listed) coalition containing ai in the partition P (e.g., l(a5, {{a1, a3},
{a2, a6}, {a5, a8}}) = 3). The function l is directly adopted
from [9]. Using the e function as defined above, our coalition value
function can be written as:

v(C, CS) = vC + e(CL) − e(CC)

This technique produces coalition values consistent with our mixed
externality setting (in particular, satisfying Assumptions 1 and 2),
since for every P ∈ P(C̄), the following necessarily holds:

l(ai, C̄) ≥ l(ai, P ) ≥ 1.
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Table 2: Relative (percentage of the total number of coalition structures) prunings by various bounding criteria in branch and bound
search in various scenarios.

|A| Type partition Pruning by Cri1 Pruning by Cri2 Pruning by IP #complete seen

8
[8] 48.92 ± 13.06 15.16 ± 5.53 34.46 ± 22.2 1.46 ± 0.87

[4,4] 27.57 ± 12.91 19.72 ± 8.1 51.7 ± 22.8 1.01 ± 0.94
[2,2,2,2] 0.73 ± 0.79 33.49 ± 11 64.33 ± 13.56 1.45 ± 1.26

[1,1,1,1,1,1,1,1] 1.3 ± 1.4 41.9 ± 10 54.3 ± 16.81 2.5 ± 1.52

10
[10] 45.32 ± 12.9 14.78 ± 10.8 39.55 ± 26.46 0.35 ± 0.41
[5,5] 27.23 ± 11 17.78 ± 8.7 54.85 ± 18 0.15 ± 0.1

[2,2,2,2,2] 0.15 ± 0.15 34.52 ± 15.2 64.7 ± 19.71 0.63 ± 0.27
[1,1,1,1,1,1,1,1,1,1] 1.17 ± 0.89 37.66 ± 11.3 60.21 ± 16.9 0.96 ± 0.55

12
[12] 36.08 ± 9 27.13 ± 10.3 36.74 ± 20.5 0.05 ± 0.05

[4,4,4] 4.82 ± 1.87 30.65 ± 12.3 64.5 ± 14.2 0.03 ± 0.02
[2,2,2,2,2,2] 0.114 ± 0.08 49.79 ± 14.4 49.75 ± 17.73 0.35 ± 0.24

[1,1,1,1,1,1,1,1,1,1,1,1] 1.89 ± 0.96 41.63 ± 13.3 56.19 ± 14.87 0.29 ± 0.25

14
[14] 31.17 ± 18.12 15.51 ± 10.2 53.32 ± 21.23 0.003 ± 0.003

[2,2,2,2,2,2,2] 0.034 ± 0.013 36.9 ± 12.9 63.04 ± 14.6 0.043 ± 0.03
[1,1,1,1,1,1,1,1,1,1,1,1] 1.25 ± 0.4 25.7 ± 7.2 73 ± 0.6 0.048 ± 0.02

6.3 Results
Table 2 shows the number of coalition structures (as percentages

of the total number of possible coalition structures in each case) that
are pruned by the three pruning criteria, viz., Theorem 3 (criterion
1, called “Cri1” in the table), equation 8 (criterion 2, called “Cri2”
in the table), and the IP pruning criterion (criterion 3 in the previous
subsection, called “IP” in the table). Note that any branch that can
be pruned by both criteria 1 and 2 are counted under criterion 1. We
generate different data sets based on 8, 10, 12 and 14 agents, and
allocate types to the agents based on the type partitioning as shown
in Table 2. Since the type space is large, the type partitions were
chosen with no particular motivation other than that we wanted to
study uniform partitions in this paper. The last column of the table
shows the percentage of complete solutions (i.e., complete coalition
structures) seen during the branch and bound search. Each figure
in the table is averaged over 10 runs, and the means and standard
deviations are shown. The standard deviations are often compara-
ble to the mean since these are averaged over multiple instances for
a type setting.

Several interesting trends are visible in Table 2. Firstly, the per-
centage of complete solutions seen decreases with increasing |A|,
which usually translates to a diminishing growth in the correspond-
ing run-time. Therefore, the branch and bound algorithm becomes
relatively more efficient on larger problems. Secondly, pruning by
IP usually dominates the other two pruning criteria, growing to
about 60% with more type varieties. Thirdly, criterion 1 (Theo-
rem 3) prunes a significant percentage of coalition structures, and
even dominates criterion 2 with fewer agents as well as fewer types.
However, this domination seems to wane with larger |A|, and cri-
terion 2 always dominates with more types. Interestingly, the ef-
fectiveness of criterion 1 in PF+ (i.e., type partition [1, 1, . . . , 1]
meaning agents are of distinct types) seems to be fixed between 1
and 2%, which indicates a sort of degeneracy of this search algo-
rithm for PF+.

7. CONCLUSIONS
We have introduced a framework to represent multi-agent sys-

tems with mixed externalities, based on the notions of competition
and complementation. We have shown that this framework includes
the cases PF+ and PF− considered in previous work as special
cases. We also generalized some of the previous results in anytime

and branch and bound search to this setting. Our branch and bound
search algorithm shows significant pruning of coalition structures,
and a relative speed-up on larger problems.

We have argued that centralized search such as branch and bound
may be more suitable for coalition formation in multi-agent sys-
tems with externalities, than the traditional distributed agent-based
approaches such as adaptation with experience, or negotiation. As
such, our approach is well-motivated and also extends the state-of-
the-art in coalition formation in multi-agent systems with external-
ities. In the future we will pursue improvement in the ratio bound
β with further search to establish an anytime algorithm for this set-
ting. We also intend to investigate the possibility of pre-pruning
in the type-partition space, and study its impact on the amount of
pruning and the run-time, particularly in the PF+ setting where
the current pruning criteria leave space for improvement.
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